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This work develops an inverse procedure which combines an improved niche genetic algo-
rithm, finite element models and experimental data to identify material parameters of biolo-
gical tissues behaving like hyperelastic materials. A novel objective function is proposed with
two coefficients, which controls the contributions in a well-balanced fashion, respectively,
for the small deformation stage and the large deformation stage. This allows us to obtain
a global minimizer (of material constants) for the error between FEM solutions and expe-
rimental data. Moreover, simple uniaxial compression tests at two different angles (0◦ and
90◦) with respect to the muscle fiber orientation are performed on fresh muscle tissues. This
enables us to obtain anisotropic properties of the muscle tissue from the present inverse
procedure. The result shows that the proposed inverse procedure is stable and reliable to
determine material constants in hyperelastic models for soft biological tissues like skeletal
muscles considering anisotropy.
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1. Introduction

Mechanical behavior of muscle tissues is an important field of study with different applications
ranging from medicine to crashworthy vehicle design for occupants. Muscles as one of the si-
gnificant sections supporting and driving animal movements, are very vulnerable to damage,
especially for sportsmen and women. A comprehensive understanding of mechanical properties
of muscles, including anisotropic properties, is critical to provide protective measures for ath-
letics from muscles damage and for speedy damaged muscle recovery. Parameter identification
techniques are utilized by many researchers to obtain the material constants. The majority of
recent works on parameter identification are performed by comparing characteristic, experimen-
tal and calculated responses with optimization algorithms to update the material parameters
systematically.
Chawla et al. (2009) combined an inverse finite element model with canonical genetic algo-

rithms, experiments to identify material parameters of the passive muscles and obtained linear
viscoelastic material constants for human muscles. The results show that the linear viscoelastic
constitutive model does not properly describe characterization of the muscle tissue. Böl et al.
(2014) conducted a series of experiments on muscle tissues using three different loading modes.
The results provide an experimental evidence that there is an anisotropic contribution of the
fiber direction to the compressive stress. Transversely isotropic, hyperelastic material models
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were usually utilized to describe the characteristic of muscles (Holzapfel et al., 2000; Gasser
et al., 2006). In order to get the material parameters of the muscle tissues, Böl et al. (2012)
firstly carried out a series of compressive tests with three different loading modes according to
the fiber orientation of passive skeletal muscle tissue, secondly, they combined the Nelder-Mead
simplex method with an inverse finite element model to fit the experimental response. However,
as the complexity of the problem increases, these types of traditional optimization methods have
increasingly shown limitations.

Silva et al. (2018) obtained in vivo active and passive material properties of the pubovisceralis
muscle in women without pathology, with urinary incontinence and pelvic organ prolapse. They
resorted an inverse finite element analysis combined with an optimization algorithm, Powell’s
method and finite element method (FEM). A constitutive model had been adopted, which was
a modified form of the incompressible transversely isotropic hyperelastic model proposed by
Martins et al. (1998).

In order to identify in vivo material parameters of the pelvic floor muscles, Yao et
al. (2015) develops a non-invasive inverse approach which combines the conventional least-
-squares estimation method and inverse finite element model with experiments. However, the
canonical least-squares needs partial derivatives in the solving process. For some practical pro-
blems, it may be very difficult to solve partial derivatives or there could be no partial derivatives
at all. Since biomechanical properties of the pelvic floor muscles are essential to help us better
understand the disorders in the pelvic cavity associated with those muscles, Silva et al. (2019)
implemented an optimization scheme, involving a genetic algorithm (GA) and an inverse finite
element analysis (FEA) to estimate the material properties of the pubovisceralis muscle. In addi-
tion, Silva conducted a comparison between the inverse procedure with the genetic algorithm to
be the searching algorithm and one with Powell’s algorithm to be the searching algorithm. The
result shows that GA requires fewer numerical simulations to minimize the objective function
in order to obtain the material parameters, when compared to Powell’s algorithm. Neverthe-
less, Powell’s algorithm presents lower function values, which means the material parameters
calculated from Powell’s algorithm are closer to real constants.

For a successful inverse analysis, a proper objective (or error) function needs to be defined.
The definition of the objective function is crucial and can be a challenging task. The objective
function adopted by Chawla for the comparison of experimental and simulated data showed a
good matching at the large deformation stage, however, mismatches were found at the small
deformation stage. The objective function adopted by Markus fits well at the small deformation
stage, but not at the large deformation stage. This work combines those two objective functions
in a single form equipped with two independent coefficients, so that the objective function can
be a good measure across the entire deformation stage by adjusting those two coefficients in a
proper manner.

Optimization methods also plays an important role in inverse analyses, and various types of
inverse techniques have been proposed, including the use of neural networks (Deng et al., 2009),
variations of genetic algorithms (Liu et al., 2001, 2002b; Ishak et al., 2001) and combinations
of different methods (Liu et al., 2002a). The canonical genetic algorithm may have excessive
random roaming in the searching process, and simple genetic algorithms can have a bad global
convergence (Thierens, 1999; Shabbir and Omenzetter, 2016). Freutel et al. (2015) combined
particle swarm optimization (PSO) with finite element analyses and applied it to identification
of meniscus parameters, resulting in a low error level of 1.2%. However, the canonical particle
swarm optimization algorithm allows the particles learn from only the best individual, and hence
some useful information of other individuals may be neglected (Du et al., 2017; Mendes et al.,
2004). Zhu et al. (2010) combined the Shepard-k-Nearest method with a genetic algorithm and
applied it to identify ultra-soft biological tissue parameters. Good agreements were found not
only at the low and high strain rates, but also at the medium strain rate.
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To increase the chance of finding the global optimal solution, this work develops an inverse
mapping program which combines the niche genetic algorithm and the finite element method
(FEM) to obtain the material parameters of muscle tissues. The basic idea is to find candidates
of material parameters which can be systematically updated in the optimization procedure that
minimizes the objective function. The objective function measures the differences of calculated
responses from finite element models and the measured responses from our own experiment
data. Our proposed inverse procedure is found stable and reliable to determine the material
constants for skeletal muscles considering anisotropy, based on both nonlinear FEM models and
experiments.

2. Improved niche genetic algorithm

Real-world optimization problems are often carried out with objective functions that have mul-
tiple optima. To improve capability on the multimodal function optimization of the widely used
genetic algorithm (GA), a niche technique is introduced into GA to improve the global optimi-
zation ability (Li et al., 2013). This work uses an improved niche genetic algorithm (INGA) as
the searching algorithm during inverse analysis. The improvement is on the selection operation
in the traditional niche genetic algorithm leading to a higher global search efficiency (Im et al.,
2004). The INGA has a faster convergence speed than GA and the population diversity well
maintained during the evolution process. The INGA introduces the concept of niche in biology,
the individual with a relatively lower fitness within the same niche is added with a decay factor
on the fitness value. For others, without any operations. After that, a proportional selection
operation is carried out, which has a significant impact on maintaining population diversity. To
search for all the extremum points of the objective function and speed up the algorithm, INGA
adopts a variable mutation probability and the variable crossover probability instead of canoni-
cal fixed values. In the INGA, the probabilities for both crossover and mutation are calculated
using

Pcro(x) =
1

1 + exp
(

x− GEN2

)Pcro Pmut(x) =
1

1 + exp
(

GEN
2 − x

)Pmut (2.1)

When Pcro(x) and Pmut(x) are the crossover probability and mutation probability, respectively,
at the x-th generation, Pcro and Pmut are these corresponding values at the first generation;
GEN is the number of generation; x is the current generation. When x increases by 1, it means
that the evolution goes into the next generation. And when x increases to GEN, the procedure
will end. In the whole evolution, x is the controller for the start and end of the procedure.

The INGA in this work is combined with Elitism preservation strategy which speeds up the
convergence of the searching algorithm. In addition, a memory search scheme is introduced into
the INGA to shorten the running time. The INGA proposed in this paper has a very promising
performance in the field of optimization. With all these improvements, the INGA has a good
performance to meet the needs in our inverse analysis.

3. Finite element model

Figure 1 shows a typical finite element model created for simulating our experimental set-up for
inverse analysis. The skeletal muscle tissue is placed in between two platens that are connected
to the ‘universal testing machine’ for compression tests. The type of element is CPS4R and the
dimension is 3D solid element. The number of elements is 2064 and the number of nodes is 2156.



250 S. Liu et al.

The top and the bottom platens are defined as a rigid body in the FEM model because these
platens are made of steel that is far stiffer and harder compared to the fresh muscle tissues.

Since the microstructure of skeletal muscle tissue consists of densely packed muscle fibers
which are arranged in fascicles and also have a quite nice locally arrangement in predominate
alignment. The muscle could be assumed transversely isotropic with respect to the direction of
the alignment, hence, in order to characterize the anisotropic behavior of the muscle tissue, the
muscle tissue block is modeled as a transversely isotropic hyperelastic material. Because of the
high content of water in the fresh muscle tissue, it exhibits behavior of nearly incompressible
materials. Thus, a transversely isotropic, hyperelastic material model with the extension to
slightly dispersed fibers by Gasser et al. (2006) was used to describe the passive behavior of the
muscle tissue

U = C10(I1 − 3) +
1

D

((Jel)2 − 1

2
− ln Jel

)

+
k1
2k2

N
∑

α=1

[

exp
(

k2〈Eα〉
2
)

− 1
]

(3.1)

with

Eα
def
= κ(I1 − 3) + (1− 3κ)(I4(αα) − 1) (3.2)

where U is the strain energy per unit volume; C10, D, k1, k2, κ are constitutive parameters;
N is the number of families of fibers (N ¬ 3); C is the right Cauchy-Green tensor; I1 is the
first invariant of C; Jel is the elastic volume ratio. The strain-like quantity Eα characterizes
deformation of the family of fibers with the mean Aα; and I4(αα) are pseudo-invariants of C
and Aα.

The model assumes that the directions of the fibers within each family are dispersed (with
rotation symmetry) about the mean preferred direction. The parameter κ (0 ¬ κ ¬ 1/3) descri-
bes the level of dispersion in the fiber directions. When κ = 0, the fibers are perfectly aligned
(no dispersion). When κ = 1/3, the fibers are randomly distributed and the material becomes
isotropic. In this work, D ≡ 0. The values of the other parameters are treated as unknowns and
should be obtained from our inverse procedure. These parameters are termed as to-be-determined
parameters, or TBD-parameters. They are: C10, k1, k2, and κ.

4. Optimization procedure

In our inverse procedure, the FEM model is used for forward FE analyses, by assuming these
TBD-parameters. The computed responses of the muscle block are then compared with the
responses measured from the experiments. We can then adjust the TBD-parameters in the FEM
model, and try to find one set of the TBD-parameters that gives the FEM response closed
possible to the measured response. This is the principal idea of the inverse procedure. To do
this systematically, however, we need to invoke an optimization procedure that minimize the
differences between FEM responses and the experimentally measured ones. For this purpose, we
define the following objective function

o(p) =
m
∑

j=1

n
∑

i=1

√

(jF expi −
jF simi )

2

jF expi
(4.1)

where F expi is the experimentally measured force from a load-cell, and F simi is the simulated
force using our FEM model with the current set of trial TBD-parameters P1, n is the number of
data points measured, and we set n = 180 in this study. We set also m = 2 that is the different
fiber orientation, i.e. 0◦/90◦.
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Fig. 1. (a) A typical finite element model of the block of soft muscle tissue placed in between the top
and bottom steel platens. (b) Setup of the compression tests for the muscle tissue blocks

Another form of the objective function which has been adopted by other researchers is
described as below

o(p) =
m
∑

j=1

n
∑

i=1

(jF expi −
jF simi )

2 (4.2)

where F expi is the experimentally measured force from the load-cell, and F simi is the simulated
force using our FEM model with the current set of trial TBD-parameters P2, n is the number of
data points measured, and we set n = 180 in this study. We set also m = 2 that is the different
fiber orientation, i.e. 0◦/90◦. This paper would utilize these two forms of the objective function
to identify the material parameters for muscle respectively.

5. Inverse analysis procedure

To perform an inverse procedure in an automated manner, a Python algorithm is coded, and it
is detailed in this Section. The IDE is used to code the inverse procedure, and Python software is
used as well. For FEA, the ABAQUS software is applied. It provides a solver for Python script to
execute the inverse procedure. This inverse procedure could be divided into three parts, including
optimization algorithm, finite element analysis and adjustment of the material parameters. The
specified steps in our Python algorithm are described in Fig. 2.

6. Experimental study

6.1. Experiment set-up and measurement data

A 24-month-old adult cow weighing nearly 400 kg is selected as the test subject, and the hind
leg is obtained from the slaughterhouse immediately after death of the animal. After that, the leg
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Fig. 2. Flow chart of our Python algorithm for parameter identification

has been wrapped in a physiological saline-soaked cloth and transported to the laboratory with
a refrigerator at 2◦C. The saline is uniformly sprayed on the cloth every 5 minutes. However,
due to the high water content of fresh muscle tissue, it is difficult to obtain the ideal cuboid
geometry. Nine fresh cuboid muscle samples are cut from the approximately square bottom of
the leg and stored at 2◦C with uniform saline sprayed every 2 minutes. These tissue specimens
are with two different fiber orientations, including samples whose fiber orientation are parallel to
the bottom surface and samples whose fiber orientation are perpendicular to the bottom surface.
The data for sample geometries are measured and summarized in Table 1.
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Table 1. Geometrical sample information for the present inverse procedure

Tissue
No.

0◦ 90◦

Dimensions Area Height Dimensions Area Height
[mm×mm] Aφ [mm

2] h [mm] [mm×mm] Aφ [mm
2] h [mm]

I 18× 18 324 16.8 18.12 × 20.7 375.084 11

II 19.88 × 19.88 395.2144 16.28 – – –

III 21.7 × 21.08 457.436 17.08 21.3 × 19.42 413.646 12.8

IV 16.98 × 17.80 302.244 15.3 20.8 × 18.42 383.136 14.98

V 21.3 × 23 489.9 15 21.38 × 21.9 468.222 16.38

All those samples are subjected to unconstrained compression tests on a universal testing
machine (Instron). While the displacement µ of the top platen is predefined, the resulted force F
is measured and converted to the mean engineering stress P = F/Aφ. The axial compression
stretch is calculated using λ = 1 + µ/h. Before testing, the samples were put in solution with
27 centigrade. All samples were tested within 7 hours after death of the animal. The specified
area of tissue that was removed of the cattle is depicted in Fig. 3.

Fig. 3. The specific area on cattle where tissues were removed from

The velocity of the top platen is controlled at 0.01mm/s. Correspondingly, the same constant
velocity boundary condition is adopted in our FEM simulation. A thin layer of vegetable oil is
applied between the sample and these two platens in order to reduce friction. The data of λ
obtained from the experiments are in a range of 0.65 to 1 and are recorded. The experimental
set-up is shown in Fig. 1b.

Figure 4a plots these curves obtained from our experiments, for specimen with fiber orienta-
tion parallel to the loading direction. The red dotted curve is the curve for the averaged data of
5 samples. Figure 4b plots these curves obtained from our experiments, for the specimen with
fibers perpendicular to the loading direction. The red dotted curve is the curve for the averaged
data of 5 samples. From Figs. 4a and 4b, it could be found that P and λ have a non-linear
relationship, and P increases with a increase of λ. It also could be found that the muscle tissue
has a greater ability to resistance the compressive deformation in the direction which is perpen-
dicular to the fiber orientation. In view of the high level of compression applied in this study,
the average relative standard deviations are small and take values of 0.33670, 0.33031 for fiber
directions 0◦ and 90◦, respectively.

The experimental data are fed into the inverse procedure discussed in Section 5. Additional
data needed for our inverse procedure are given in Table 2. In order to model the behavior on the
interface between the fresh tissue and those two steel platens, the friction there is considered.
However, we do not really know the friction coefficient. We thus decide to treat the friction



254 S. Liu et al.

Fig. 4. Compressive stress-stretch responses of 10 samples. The loading direction is parallel (a) and
perpendicular (b)to the tissues fiber direction. The red dotted curve is for the average data

Table 2. Improved niche genetic algorithm input parameters, including parameter domains for
the progress searching and other parameters to be defined before the procedure

Description of function Value

Number of evolutionary algebra 30

Population size 100

Number of real coded variables 5

Variables iterated (TBD-parameters) C10, k1, k2, κ, α

Lower and upper bound of C10 Cmin10 = 10Pa, C
max
10 = 2 · 10

3 Pa

Lower and upper bound of k1 kmin1 = 1 · 103 Pa, kmax1 = 700 · 103 Pa

Lower and upper bound of k2 kmin2 = 10, kmax2 = 180

Lower and upper bound of κ κmin = 0.001, κmax = 0.28

Lower and upper bound of friction αmin = 0.001, αmax = 0.020

Cross over probability Pcro = 0.9

Mutation probability Pmut = 0.12

Niche radius 10

coefficient α as one of the TBD-parameters in our inverse procedure, therefore, we know have
five TBD-parameters in total, they are C10, k1, k2, κ, α. Those five TBD-parameter and their
domains as well as some other arguments needed in the inverse procedure are shown in Table 2.

6.2. Inverse determined parameters and their assessment

Using our automated inverse procedure defined in Section 5 and the experimental da-
ta obtained in Section 6.1, the TBD-parameters are then determined, which are termed as
D-parameters for convenience. When using objective function (4.1), the D-parameters are in
set P1, and those D-parameters obtained using objective function (4.2) are in the set P2.
To quantitatively assess the accuracy of these D-parameters, we next use them in our

ABAQUS model to compute the stress-stretch responses. When the D-parameters in P1 are
used, the computed stress-stretch responses together with the average experimentally obtained
curve are plotted in Fig. 5a for the case of fiber orientation parallel to the loading direction.
The same is plotted in Fig. 5a, but for the case of fiber orientation perpendicular to the loading
direction.
When the D-parameters in P2 are used, the computed stress-stretch responses are plotted in

Fig. 5a, together with the experimentally obtained curve, for the case of fiber orientation parallel
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Fig. 5. FEM results obtained using the D-parameters when equation (4.1) is used as the objective
function in our inverse procedure, in comparison with the experiment data. The loading direction is

parallel (a) and perpendicular (b) to the fiber direction

to the loading direction. The same is plotted in Fig. 5b, but for the case of fiber orientation
perpendicular to the loading direction.

From our experimental observations (see, Figs. 5a and 5b), it could be found that the com-
puted response and the experimental response matches well at the small deformation stage,
but not at the large deformation stage. The deviation between the computed responses and the
measured responses is getting bigger and bigger with an increase of the deformation.

From our experimental observations (see, Figs. 6a and 6b), it could be found that the com-
puted response and the experimental response matches well at the large deformation stage, but
not at the small deformation stage. From the comparison of Fig. 4b and Fig. 5b, it could be
found that the advantage of those two forms of objective functions appear at different stages
respectively. The matching result in the entire domain for the calculated and measured respon-
se, not the matching result in a certain partial domain, is a measure of quality of the objective
function.

Fig. 6. FEM results obtained using the D-parameters when equation (4.2) is used as the objective
function in our inverse procedure, in comparison with the experiment data. The loading direction is

parallel (a) and perpendicular (b) to the fiber direction
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Obviously, those two objective functions discussed above cannot be called a preferred objecti-
ve function. In order to enhance the performance of the objective function in the whole domain,
we combine those two objective functions above. Two controllable coefficients are applied to
strengthen the versatility of the objective function. Its form can be expressed as follows

o(p) = k1

m
∑

j=1

n
∑

i=1

√

(jF expi −
jF simi )

2

jF expi
+ k2

m
∑

j=1

n
∑

i=1

(jF expi −
jF simi )

2 (6.1)

Our objective function has now two terms controlled by two coefficients. The first part
controls the mismatch between the computed response and the measured response during the
small deformation stage, while the second term controls that at the large deformation stage.
When k1 = 1 and k2 = 0, objective function (4.3) is transformed to be function (4.1); when

k1 = 0 and k2 = 1, objective function (4.3) is transformed to be function (4.2). For different
problems, the best matching result in the whole domain for the calculated and experimental
response can be obtained by adjusting the coefficients of those two terms.
However, how to determine the coefficient of those two items has become an urgent problem

to be solved. In order to solve it, firstly, we set those two coefficients to be k1 = 1 and k2 = 0, the
calculated response and the measured response are fed into function (4.2) to calculate A, and
the two coefficients are set k1 = 0 and k2 = 1, secondly, the calculated and measured response
are fed into function (4.2) to calculate B, thirdly, the define a function to represent the relation
between k1 and k2

A

B
=
k2
k1

(6.2)

In this paper, the ratio of A and B is rounded and defined by d ≈ A/B. When d > 1, k1 = 1,
k2 = d; when d < 1, k1 = 1/d, k2 = 1. In this paper, d ≈ 5, which means k1 = 1, k2 = 5. Those
two values of the coefficients are fed into objective function (4.3), and function (4.3) is updated
into the inverse process, the D-parameters are in the set P3. When the D-parameters in P3 are
used, the computed stress-stretch response is plotted in Fig. 7a together with the experimentally
obtained curve for the case of fiber orientation parallel to the loading direction. The same is
plotted in Fig. 7b, but for the case of fiber orientation perpendicular to the loading direction.

Fig. 7. FEM results obtained using the D-parameters when equation (4.3) is used as the objective
function in our inverse procedure, in comparison with the experiment data. The loading direction is

parallel (a) and perpendicular (b) to the fiber direction

From the comparison of Fig. 5a and Fig. 6a, it could be found that the degree of the agreement
between the calculated response and the average experimental response is higher in Fig. 5b. The
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results obtained from the comparison of Fig. 5b and Fig. 6b shows that Fig. 6b has a better
agreement. To quantify the degree of matching between the simulated response and the average
test response, a comparison study for those two set of D-parameters is conducted. In doing so,
a general error function is defined for quantitative examination

error =
1

mn

√

√

√

√

m
∑

j=1

n
∑

i=1

( jF expi −
jF simi

jF expi

)2
(6.3)

The calculated value of the error represents the difference between theD-parameters obtained
from the inverse procedure and the real constants. The lower the error value, the better the
calculated responses matching the measured responses and the closer the D-parameters are
to the real constants. The D-parameters obtained from the inverse procedure represent the
anisotropy of the muscle, and the errors calculated from the error function are shown in Table 3.
According to Table 3, we can see that the error for the set P2 is lower than the error for the
set P1, which means that the set P2 is closer to the real constants. Correspondingly, objective
function (4.3) is more suitable for the inverse procedure in this work.

Table 3. The D-parameters of muscle tissues and the error value

Parameters C10 D k1 k2 κ α error (6.1)

P1 0.000304 0 0.057693 48 0.207049 0.012402 0.244670

P2 0.001333 0 0.494938 19 0.140389 0.140383 0.216041

P3 0.0008902 0 0.222694 23 0.160694 0.014370 0.059913

The two sets of D-parameters P1 and P2 are obtained from the inverse procedure by utilizing
objective functions (4.1) and (4.2), respectively, and P3 is obtained from the inverse procedure
by using objective function (4.3) with k1 = 1 and k2 = 5. Table 3 shows clearly that the set
P3 has a much lower error value, meaning that it is closer to the real material parameters. The
results shown in Figs. 7a and 7b also support this finding. It can be concluded that the objective
function proposed in this paper has a good performance when applied in the parameter iden-
tification of passive skeletal muscles undergoing large deformation. This research further shows
that the transverse isotropic hyperelastic material model (HGO) has a very good performance
in describing the anisotropic mechanical properties of the muscle tissue.

7. Conclusion

An inverse procedure has been developed to identify material parameters of passive skeletal
muscles. The basic idea of this reverse process is to combine an improved niche genetic algorithm
with the inverse finite element method by adjusting the material parameters to achieve the best
fit between the calculated response and the experimental measurement. In the reverse procedure,
the purpose of the finite element method is to establish a simulation model and obtain simulation
data. Moreover, the improved niche genetic algorithm is employed by the reverse procedure to
search the optimal material parameters within the designed space. It can be seen from the
results that the mean engineering stress and the axial compression stretch have a strong non-
-linear relationship regardless of whether the fiber orientation is perpendicular or parallel to
the loading direction. When the angle between the fiber orientation and the loading direction
increases, the ability to resist deformation is enhanced, which is consistent with the results of
Böl et al. (2012).
Concerning the experimental compressive response of passive muscle tissue, the results are

partially in line with those obtained by Loocke et al. (2006) for the orientation dependent
compression of fresh porcine muscle tissue. The final conclusion can be achieved as follows:
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• The approach of combining the improved niche genetic algorithm, FEM model, and the
experimental data is an effective approach to identify nonlinear and anisotropic material
properties of passive skeletal muscles under compression conditions.

• A modified objective function has been proposed in the work. The result of the inverse
procedure utilizing the modified objective function gives a much smaller error compared
with the existing objective function. This type of a multiple piece objective function propo-
sed in this work can be extended for different types of identification problems by properly
adjusting these coefficients for different loading stages.

• The inverse procedure proposed in this work may be applicable to tissues subjected to
other types of loading conditions, and also to other soft tissues that obey the hyperelastic
constitutive model.
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